
2.1  INTRODUCTION

In Chapters 6 and 8 (Class XI), the notion of potential energy was
introduced. When an external force does work in taking a body from a
point to another against a force like spring force or gravitational force,
that work gets stored as potential energy of the body. When the external
force is removed, the body moves, gaining kinetic energy and losing
an equal amount of potential energy. The sum of kinetic and
potential energies is thus conserved. Forces of this kind are called
conservative forces. Spring force and gravitational force are examples of
conservative forces.

Coulomb force between two (stationary) charges is also a conservative
force. This is not surprising, since both have inverse-square dependence
on distance and differ mainly in the proportionality constants – the
masses in the gravitational law are replaced by charges in Coulomb’s
law. Thus, like the potential energy of a mass in a gravitational
field, we can define electrostatic potential energy of a charge in an
electrostatic field.

Consider an electrostatic field E due to some charge configuration.
First, for simplicity, consider the field E due to a charge Q placed at the
origin. Now, imagine that we bring a test charge q from a point R to a
point P against the repulsive force on it due to the charge Q. With reference
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to Fig. 2.1, this will happen if Q and q are both positive
or both negative. For definiteness, let us take Q, q > 0.

Two remarks may be made here. First, we assume
that the test charge q is so small that it does not disturb
the original configuration, namely the charge Q at the
origin (or else, we keep Q fixed at the origin by some
unspecified force). Second, in bringing the charge q from
R to P, we apply an external force Fext just enough to
counter the repulsive electric force FE (i.e, Fext= –FE).
This means there is no net force on or acceleration of
the charge q when it is brought from R to P, i.e., it is
brought with infinitesimally slow constant speed. In

this situation, work done by the external force is the negative of the work
done by the electric force, and gets fully stored in the form of potential
energy of the charge q. If the external force is removed on reaching P, the
electric force will take the charge away from Q – the stored energy (potential
energy) at P is used to provide kinetic energy to the charge q in such a
way that the sum of the kinetic and potential energies is conserved.

Thus, work done by external forces in moving a charge q from R to P is

W
RP

 =   
P

R

dext∫F ri

        =    
P

R

dE−∫ F ri  (2.1)

This work done is against electrostatic repulsive force and gets stored
as potential energy.

At every point in electric field, a particle with charge q possesses a
certain electrostatic potential energy, this work done increases its potential
energy by an amount equal to potential energy difference between points
R and P.

Thus, potential energy difference

P R RPU U U W∆ = − = (2.2)

(Note here that this displacement is in an opposite sense to the electric
force and hence work done by electric field is negative, i.e., –W

RP
.)

Therefore, we can define electric potential energy difference between
two points as the work required to be done by an external force in moving
(without accelerating ) charge q from one point to another for electric field
of any arbitrary charge configuration.

Two important comments may be made at this stage:
(i) The right side of Eq. (2.2) depends only on the initial and final positions

of the charge. It means that the work done by an electrostatic field in
moving a charge from one point to another depends only on the initial
and the final points and is independent of the path taken to go from
one point to the other. This is the fundamental characteristic of a
conservative force. The concept of the potential energy would not be
meaningful if the work depended on the path. The path-independence
of work done by an electrostatic field can be proved using the
Coulomb’s law. We omit this proof here.

FIGURE 2.1 A test charge q (> 0) is
moved from the point R to the
point P against the repulsive

force on it by the charge Q (> 0)
placed at the origin.
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(ii) Equation (2.2) defines potential energy difference in terms
of the physically meaningful quantity work. Clearly,
potential energy so defined is undetermined to within an
additive constant.What this means is that the actual value
of potential energy is not physically significant; it is only
the difference of potential energy that is significant. We can
always add an arbitrary constant α to potential energy at
every point, since this will not change the potential energy
difference:

( ) ( )P R P RU U U Uα α+ − + = −

Put it differently, there is a freedom in choosing the point
where potential energy is zero. A convenient choice is to have
electrostatic potential energy zero at infinity. With this choice,
if we take the point R at infinity, we get from Eq. (2.2)

P P PW U U U∞ ∞= − = (2.3)

Since the point P is arbitrary, Eq. (2.3) provides us with a
definition of potential energy of a charge q at any point.
Potential energy of charge q at a point (in the presence of field
due to any charge configuration) is the work done by the
external force (equal and opposite to the electric force) in
bringing the charge q from infinity to that point.

2.2  ELECTROSTATIC POTENTIAL

Consider any general static charge configuration. We define
potential energy of a test charge q in terms of the work done
on the charge q. This work is obviously proportional to q, since
the force at any point is qE, where E is the electric field at that
point due to the given charge configuration. It is, therefore,
convenient to divide the work by the amount of charge q, so
that the resulting quantity is independent of q. In other words,
work done per unit test charge is characteristic of the electric
field associated with the charge configuration. This leads to
the idea of electrostatic potential V due to a given charge
configuration. From Eq. (2.1), we get:

Work done by external force in bringing a unit positive
charge from point R to P

= V
P 
– V

R
  P RU U

q

 −
=  

(2.4)

where VP and VR  are the electrostatic potentials at P and R, respectively.
Note, as before, that it is not the actual value of potential but the potential
difference that is physically significant. If, as before, we choose the
potential to be zero at infinity, Eq. (2.4) implies:

Work done by an external force in bringing a unit positive charge
from infinity to a point = electrostatic potential (V ) at that point.

C
O

U
N

T
 A

L
E

S
S

A
N

D
R

O
 V

O
L
T
A

 (1
7
4
5
 –1

8
2
7
)

Count Alessandro Volta

(1745 – 1827) Italian
physicist, professor at
Pavia. Volta established
that the animal electri-

city  observed by Luigi
Galvani, 1737–1798, in
experiments with frog
muscle tissue placed in
contact with dissimilar
metals, was not due to
any exceptional property
of animal tissues but
was also generated
whenever any wet body
was sandwiched between
dissimilar metals. This
led him to develop the
first voltaic  pile , or
battery, consisting of a
large stack of moist disks
of cardboard (electro-
lyte) sandwiched
between disks of metal
(electrodes).
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In other words, the electrostatic potential (V )
at any point in a region with electrostatic field is
the work done in bringing a unit positive
charge (without acceleration) from infinity to
that point.

The qualifying remarks made earlier regarding
potential energy also apply to the definition of
potential. To obtain the work done per unit test
charge, we should take an infinitesimal test charge
δq, obtain the work done δW in bringing it from
infinity to the point and determine the ratio
δW/δq. Also, the external force at every point of
the path is to be equal and opposite to the
electrostatic force on the test charge at that point.

2.3  POTENTIAL DUE TO A POINT CHARGE

Consider a point charge Q at the origin (Fig. 2.3). For definiteness, take Q
to be positive. We wish to determine the potential at any point P with

position vector r from the origin. For that we must
calculate the work done in bringing a unit positive
test charge from infinity to the point P. For Q > 0,
the work done against the repulsive force on the
test charge is positive. Since work done is
independent of the path, we choose a convenient
path – along the radial direction from infinity to
the point P.

At some intermediate point P′ on the path, the
electrostatic force on a unit positive charge is

2
0

1
ˆ

4 '
Q

rε
×

′
π

r (2.5)

where ˆ′r is the unit vector along OP′. Work done
against this force from  r′ to r′ + ∆r′ is

2
04 '

Q
W r

rε
∆ = − ∆ ′

π (2.6)

The negative sign appears because for ∆r ′ < 0, ∆W is positive . Total
work done (W) by the external force is obtained by integrating Eq. (2.6)
from r′ = ∞ to r′ = r,

2
0 00 4 44 '

r rQ Q Q
W dr

r rr ε εε ∞∞

= − = =′
π ππ ′∫ (2.7)

This, by definition is the potential at P due to the charge Q

0

( )
4

Q
V r

rε
=

π (2.8)

FIGURE 2.2 Work done on a test charge q
by the electrostatic field due to any given

charge configuration is independent
of the path, and depends only on

its initial and final positions.

FIGURE 2.3 Work done in bringing a unit
positive test charge from infinity to the
point P, against the repulsive force of

charge Q (Q > 0), is the potential at P due to
the charge Q.
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Equation (2.8) is true for any
sign of the charge Q, though we
considered Q > 0 in its derivation.
For Q < 0, V < 0, i.e., work done (by
the external force) per unit positive
test charge in bringing it from
infinity to the point is negative. This
is equivalent to saying that work
done by the electrostatic force in
bringing the unit positive charge
form infinity to the point P is
positive. [This is as it should be,
since for Q < 0, the force on a unit
positive test charge is attractive, so
that the electrostatic force and the
displacement (from infinity to P) are
in the same direction.] Finally, we
note that Eq. (2.8) is consistent with
the choice that potential at infinity
be zero.

Figure (2.4) shows how the electrostatic potential ( ∝ 1/r ) and the
electrostatic field ( ∝ 1/r2 ) varies with r.

Example 2.1
(a) Calculate the potential at a point P due to a charge of 4 × 10–7C

located 9 cm away.
(b) Hence obtain the work done in bringing a charge of 2 × 10–9 C

from infinity to the point P. Does the answer depend on the path
along which the charge is brought?

Solution

(a)  

          = 4 × 104 V

(b) W = qV = 2 × 10–9C × 4 × 104V
     = 8 × 10–5 J

No, work done will be path independent. Any arbitrary infinitesimal
path can be resolved into two perpendicular displacements: One along
r and another perpendicular to r. The work done corresponding to
the later will be zero.

2.4  POTENTIAL DUE TO AN ELECTRIC DIPOLE

As we learnt in the last chapter, an electric dipole consists of two charges
q and  –q separated by a (small) distance 2a. Its total charge is zero. It is
characterised by a dipole moment vector p whose magnitude is q × 2a
and which points in the direction from –q to q (Fig. 2.5). We also saw that
the electric field of a dipole at a point with position vector r depends not
just on the magnitude r, but also on the angle between r and p. Further,

FIGURE 2.4 Variation of potential V with r [in units of
(Q/4πε0) m

-1] (blue curve) and field with r [in units
of (Q/4πε0) m

-2 ] (black curve) for a point charge Q.
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the field falls off, at large distance, not as
1/r 2 (typical of field due to a single charge)
but as 1/r3. We, now, determine the electric
potential due to a dipole and contrast it
with the potential due to a single charge.

As before, we take the origin at the
centre of the dipole. Now we know that the
electric field obeys the superposition
principle. Since potential is related to the
work done by the field, electrostatic
potential also follows the superposition
principle. Thus, the potential due to the
dipole is the sum of potentials due to the
charges q and –q

0 1 2

1
4

q q
V

r rε
 

= − π  
(2.9)

where r1 and r2 are the distances of the
point P from q and –q, respectively.

Now, by geometry,
2 2 2

1 2r r a ar= + − cosθ

2 2 2
2 2r r a ar= + +  cosθ (2.10)

We take r much greater than a ( ar >> ) and retain terms only upto
the first order in a/r

  

r r

  
2 2 cos

1
a

r
r

θ 
≅ −   (2.11)

 Similarly,

  
2 2
2

2 cos
1

a
r r

r

θ 
≅ +   (2.12)

Using the Binomial theorem and retaining terms upto the first order
in a/r ; we obtain,

1/2

1

1 1 2 cos 1
1 1 cos

a a

r r r r r

θ
θ

−
   

≅ − ≅ +       [2.13(a)]

1/2

2

1 1 2 cos 1
1 1 cos

a a

r r r r r

θ
θ

−
   

≅ + ≅ −       [2.13(b)]

 Using Eqs. (2.9) and (2.13) and p = 2qa, we get

2 2
0 0

2 cos cos
4 4

q a p
V

r r

θ θ
ε ε

= =
π π (2.14)

Now, p cos θ = ˆp ri

FIGURE 2.5 Quantities involved in the calculation
of potential due to a dipole.
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where r̂  is the unit vector along the position vector OP.
The electric potential of a dipole is then given by

2
0

ˆ1
4

V
rε

=
π

p ri
;       (r >> a)  (2.15)

Equation (2.15) is, as indicated, approximately true only for distances
large compared to the size of the dipole, so that higher order terms in
a/r are negligible. For a point dipole p at the origin, Eq. (2.15) is, however,
exact.

From Eq. (2.15), potential on the dipole axis (θ = 0, π ) is given by

2
0

1
4

p
V

rε
= ±

π (2.16)

(Positive sign for θ = 0, negative sign for θ = π.) The potential in the
equatorial plane (θ = π/2) is zero.

The important contrasting features of electric potential of a dipole
from that due to a single charge are clear from Eqs. (2.8) and (2.15):
(i) The potential due to a dipole depends not just on r but also on the

angle between the position vector  r and the dipole moment vector p.
(It is, however, axially symmetric about p. That is, if you rotate the
position vector r  about  p, keeping θ fixed, the points corresponding
to P on the cone so generated will have the same potential as at P.)

(ii) The electric dipole potential falls off, at large distance, as 1/r2, not as
1/r, characteristic of the potential due to a single charge. (You can
refer to the Fig. 2.5 for graphs of 1/r 2 versus r and 1/r versus r,
drawn there in another context.)

2.5  POTENTIAL DUE TO A SYSTEM OF CHARGES

Consider a system of charges q1, q2,…, qn with position vectors r1, r2,…,
rn relative to some origin (Fig. 2.6). The potential V1 at P due to the charge
q1 is

1
1

0 1P

1
4

q
V

rε
=

π

where r1P is the distance between q1 and P.

Similarly, the potential V2 at P due to q2 and
V3 due to q3 are given by

2
2

0 2P

1
4

q
V

rε
=

π , 
3

3
0 3P

1
4

q
V

rε
=

π

where r2P and r3P are the distances of P from
charges q2 and q3, respectively; and so on for the
potential due to other charges. By the
superposition principle, the potential V at P due
to the total charge configuration is the algebraic
sum of the potentials due to the individual
charges

V = V1 + V2 + ... + Vn (2.17)

FIGURE 2.6 Potential at a point due to a
system of charges is the sum of potentials

due to individual charges.
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= + + + π  
(2.18)

If we have a continuous charge distribution characterised by a charge
density ρ (r), we divide it, as before, into small volume elements each of
size ∆v and carrying a charge ρ∆v. We then determine the potential due
to each volume element and sum (strictly speaking , integrate) over all
such contributions, and thus determine the potential due to the entire
distribution.

We have seen in Chapter 1 that for a uniformly charged spherical shell,
the electric field outside the shell is as if the entire charge is concentrated
at the centre. Thus, the potential outside the shell is given by

0

1
4

q
V

rε
=

π    ( )r R≥ [2.19(a)]

where q is the total charge on the shell and R its radius. The electric field
inside the shell is zero. This implies (Section 2.6) that potential is constant
inside the shell (as no work is done in moving a charge inside the shell),
and, therefore, equals its value at the surface, which is

0

1
4

q
V

Rε
=

π [2.19(b)]

Example 2.2 Two charges 3 × 10 –8 C and –2 × 10–8 C are located
15 cm apart. At what point on the line joining the two charges is the
electric potential zero? Take the potential at infinity to be zero.

Solution Let us take the origin O at the location of the positive charge.
The line joining the two charges is taken to be the x-axis;  the negative
charge is  taken to be on the right side of the origin (Fig. 2.7).

FIGURE 2.7

Let P be the required point on the x-axis where the potential is zero.
If x is the x-coordinate of P, obviously x must be positive. (There is no
possibility of potentials due to the two charges adding up to zero for
x < 0.) If x lies between O and A, we have

–8 –8

–2 –2
0

1 3 10 2 10
0

10 (15 ) 104 ε

× ×
− =

× − ×π

 
 
 x x

where x is in cm. That is,

3 2
0

15x x
− =

−
which gives x  =  9 cm.
If x lies on the extended line OA, the required condition is

3 2
0

15x x
− =

−
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which gives
x  = 45 cm

Thus, electric potential is zero at 9 cm and 45 cm away from the
positive charge on the side of the negative charge. Note that the
formula for potential used in the calculation required choosing
potential to be zero at infinity.

Example 2.3  Figures 2.8 (a) and (b) show the field lines of a positive
and negative point charge respectively.

FIGURE 2.8

(a) Give the signs of the potential difference V
P 

– V
Q
; V

B
 – V

A
.

(b) Give the sign of the potential energy difference of a small negative
charge between the points Q and P; A and B.

(c) Give the sign of the work done by the field in moving a small
positive charge from Q to P.

(d) Give the sign of the work done by the external agency in moving
a small negative charge from B to A.

(e) Does the kinetic energy of a small negative charge increase or
decrease in going from B to A?

Solution

(a) As 
1

V
r

∝ , VP > VQ. Thus, (VP – VQ ) is positive. Also VB is less negative

than V
A
 .  Thus, V

B
 > V

A
 or (V

B 
– V

A
) is positive.

(b) A small negative charge will be attracted towards positive charge.
The negative charge moves from higher potential energy to lower
potential energy. Therefore the sign of potential energy difference
of a small negative charge between Q and P is positive.
Similarly, (P.E.)

A
 > (P.E.)

B
 and hence

 
sign of potential energy

differences is positive.

(c) In moving a small positive charge from Q to P, work has to be
done by an external agency against the electric field. Therefore,
work done by the field is negative.

(d) In moving a small negative charge from B to A work has to be
done by the external agency. It is positive.

(e) Due to force of repulsion on the negative charge, velocity decreases
and hence the kinetic energy decreases in going from B to A.
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FIGURE 2.10 Equipotential surfaces for a uniform electric field.

2.6  EQUIPOTENTIAL SURFACES

An equipotential surface is a surface with a constant value of potential
at all points on the surface. For a single charge q, the potential is given
by Eq. (2.8):

1
4 o

q
V

rε
=

π
This shows that V is a constant if r is constant . Thus, equipotential

surfaces of a single point charge are concentric spherical surfaces centred
at the charge.

Now the electric field lines for a single charge q are radial lines starting
from or ending at the charge, depending on whether q is positive or negative.
Clearly, the electric field at every point is normal to the equipotential surface
passing through that point. This is true in general: for any charge
configuration, equipotential surface through a point is normal to the
electric field at that point. The proof of this statement is simple.

If the field were not normal to the equipotential surface, it would
have non-zero component along the surface. To move a unit test charge
against the direction of the component of the field, work would have to
be done. But this is in contradiction to the definition of an equipotential
surface: there is no potential difference between any two points on the
surface and no work is required to move a test charge on the surface.
The electric field must, therefore, be normal to the equipotential surface
at every point. Equipotential surfaces offer an alternative visual picture
in addition to the picture of electric field lines around a charge
configuration.

FIGURE 2.9 For a
single charge q

(a) equipotential
surfaces are

spherical surfaces
centred at the
charge, and

(b) electric field
lines are radial,
starting from the
charge if q > 0.

For a uniform electric field E, say, along the x -axis, the equipotential
surfaces are planes normal to the x -axis, i.e., planes parallel to the y-z
plane (Fig. 2.10). Equipotential surfaces for (a) a dipole and (b) two
identical positive charges  are shown in Fig. 2.11.

FIGURE 2.11 Some equipotential surfaces for (a) a dipole,
(b) two identical positive charges.
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2.6.1  Relation between field and potential

Consider two closely spaced equipotential surfaces A and B (Fig. 2.12)
with potential values V and V + δV, where δV is the change in V in the
direction of the electric field E. Let P be a point on the
surface B. δl  is the perpendicular distance of the
surface A from P. Imagine that a unit positive charge
is moved along this perpendicular from the surface B
to surface A against the electric field. The work done
in this process is |E|δ l.

This work equals the potential difference
VA–VB.

Thus,

|E|δ l = V − (V +δV)=  –δV

i.e., |E|= V

l

δ
δ

− (2.20)

Since δV is negative, δV = – |δV|. we can rewrite
Eq (2.20) as

VV

l l

δδ
δ δ

= − = +E (2.21)

We thus arrive at two important conclusions concerning the relation
between electric field and potential:
(i) Electric field is in the direction in which the potential decreases

steepest.
(ii) Its magnitude is given by the change in the magnitude of potential

per unit displacement normal to the equipotential surface at the point.

2.7  POTENTIAL ENERGY OF A SYSTEM OF CHARGES

Consider first the simple case of two charges q
1
and q

2
 with position vector

r1 and r2 relative to some origin. Let us calculate the work done
(externally) in building up this configuration. This means that we consider
the charges q1 and q2 initially at infinity and determine the work done by
an external agency to bring the charges to the given locations. Suppose,
first the charge q

1
 is brought from infinity to the point r

1
. There is no

external field against which work needs to be done, so work done in
bringing q1 from infinity to r1 is zero. This charge produces a potential in
space given by

1
1

0 1P

1
4

q
V

rε
=

π
where r

1P
 is the distance of a point P in space from the location of q

1
.

From the definition of potential, work done in bringing charge q
2
 from

infinity to the point r2 is q2 times the potential at r2 due to q1:

work done on q
2 
= 1 2

0 12

1
4

q q

rεπ

FIGURE 2.12  From the
potential to the field.
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where r
12

 is the distance between points 1 and 2.
Since electrostatic force is conservative, this work gets

stored in the form of potential energy of the system. Thus,
the potential energy of a system of two charges q1 and q2 is

1 2

0 12

1
4

q q
U

rε
=

π (2.22)

Obviously, if q2 was brought first to its present location and
q1 brought later, the potential energy U would be the same.
More generally, the potential energy expression,

Eq. (2.22), is unaltered whatever way the charges are brought to the specified
locations, because of path-independence of work for electrostatic force.

Equation (2.22) is true for any sign of  q1and q2. If q1q2 > 0, potential
energy is positive. This is as expected, since for like charges (q1q2 > 0),
electrostatic force is repulsive and a positive amount of work is needed to
be done against this force to bring the charges from infinity to a finite
distance apart. For unlike charges (q

1 
q

2 
< 0), the electrostatic force is

attractive. In that case, a positive amount of work is needed against this
force to take the charges from the given location to infinity. In other words,
a negative amount of work is needed for the reverse path (from infinity to
the present locations), so the potential energy is negative.

Equation (2.22) is easily generalised for a system of any number of
point charges. Let us calculate the potential energy of a system of three
charges q1, q2 and q3 located at r1, r2, r3, respectively. To bring q1 first
from infinity to r1, no work is required. Next we bring q2 from infinity to
r

2
. As before, work done in this step is

1 2
2 1 2

0 12

1
( )

4
q q

q V
rε

=
π

r (2.23)

The charges q1 and q2 produce a potential, which at any point P is
given by

1 2
1, 2

0 1P 2P

1
4

q q
V

r rε
 

= + π  
(2.24)

Work done next in bringing q
3 
from infinity to the point r

3 
is  q

3 
times

V
1, 2 

at r
3

1 3 2 3
3 1,2 3

0 13 23

1
( )

4
q q q q

q V
r rε

 
= + π  

r (2.25)

The total work done in assembling the charges
at the given locations is obtained by adding the work
done in different steps [Eq. (2.23) and Eq. (2.25)],

1 3 2 31 2

0 12 13 23

1
4

q q q qq q
U

r r rε
 

= + + π  
(2.26)

Again, because of the conservative nature of the
electrostatic force (or equivalently, the path
independence of work done), the final expression for
U, Eq. (2.26), is independent of the manner in which
the configuration is assembled. The potential energy

FIGURE 2.13 Potential energy of a
system of charges q1 and q2 is

directly proportional to the product
of charges and inversely to the

distance between them.

FIGURE 2.14 Potential energy of a
system of three charges is given by
Eq. (2.26), with the notation given

in the figure.
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is characteristic of the present state of configuration, and not the way
the state is achieved.

Example 2.4 Four charges are arranged at the corners of a square
ABCD of side d, as shown in Fig. 2.15.(a) Find the work required to
put together this arrangement. (b) A charge q0 is brought to the centre
E of the square, the four charges being held fixed at its corners. How
much extra work is needed to do this?

FIGURE 2.15

Solution
(a) Since the work done depends on the final arrangement of the
charges, and not on how they are put together, we calculate work
needed for one way of putting the charges at A, B, C and D. Suppose,
first the charge +q is brought to A, and then the charges –q,  +q, and
–q are brought to B, C and D, respectively. The total work needed can
be calculated in steps:
(i) Work needed to bring charge +q to A when no charge is present

elsewhere: this is zero.
(ii) Work needed to bring –q to B when +q is at A. This is given by

(charge at B) × (electrostatic potential at B due to charge +q at A)
2

0 04 4

q q
q

d dε ε

 
= − × = − π π 

(iii) Work needed to bring charge +q to C when +q is at A and –q is at
B. This is given by (charge at C) × (potential at C due to charges
at A and B)

00 44 2

q q
q

dd εε

 + −
= + + ππ 

      
2

0

1
1

4 2

q

dε
−  

= −  π
(iv) Work needed to bring –q to D when +q at A,–q at B, and +q at C.

This is given by (charge at D) × (potential at D due to charges at A,
B and C)

      
0 004 44 2

q q q
q

d ddε εε

 + −
= − + + π ππ 

2

0

1
2

4 2

q

dε
−  

= −  π
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Add the work done in steps (i), (ii), (iii) and (iv). The total work
required is

2

0

1 1
(0) (1) 1 2

4 2 2

q

dε

 −    
= + + − + −       π  

 ( )
2

0

4 2
4

q

dε
−

= −
π

The work done depends only on the arrangement of the charges, and
not how they are assembled. By definition, this is the total
electrostatic energy of the charges.
(Students may try calculating same work/energy by taking charges
in any other order they desire and convince themselves that the energy
will remain the same.)
(b) The extra work necessary to bring a charge q0 to the point E when
the four charges are at A, B, C and D is q0 × (electrostatic potential at
E due to the charges at A, B, C and D). The electrostatic potential at
E is clearly zero since potential due to A and C is cancelled by that
due to B and D. Hence no work is required to bring any charge to
point E.

2.8  POTENTIAL ENERGY IN AN EXTERNAL FIELD

2.8.1  Potential energy of a single charge

In Section 2.7, the source of the electric field was specified – the charges
and their locations - and the potential energy of the system of those charges
was  determined. In this section, we ask a related but a distinct question.
What is the potential energy of a charge q in a given field? This question
was, in fact, the starting point that led us to the notion of the electrostatic
potential (Sections 2.1 and 2.2). But here we address this question again
to clarify in what way it is different from the discussion in Section 2.7.

The main difference is that we are now concerned with the potential
energy of a charge (or charges) in an external field. The external field E is
not produced by the given charge(s) whose potential energy we wish to
calculate. E is produced by sources external to the given charge(s).The
external sources may be known, but often they are unknown or
unspecified; what is specified is the electric field E or the electrostatic
potential V due to the external sources. We assume that the charge q
does not significantly affect the sources producing the external field. This
is true if q is very small, or the external sources are held fixed by other
unspecified forces. Even if q is finite, its influence on the external sources
may still be ignored in the situation when very strong sources far away
at infinity produce a finite field E in the region of interest. Note again that
we are interested in determining the potential energy of a given charge q
(and later, a system of charges) in the external field; we are not interested
in the potential energy of the sources producing the external electric field.

The external electric field E and the corresponding external potential
V may vary from point to point. By definition, V at a point P is the work
done in bringing a unit positive charge from infinity to the point P.
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(We continue to take potential at infinity to be zero.) Thus, work done in
bringing a charge q from infinity to the point P in the external field is qV.
This work is stored in the form of potential energy of q. If the point P has
position vector r relative to some origin, we can write:

Potential energy of q at r in an external field

= qV(r) (2.27)

where V(r) is the external potential at the point r.
Thus, if an electron with charge q = e = 1.6×10–19 C is accelerated by

a potential difference of ∆V = 1 volt, it would gain energy of q∆V = 1.6 ×
10–19J. This unit of energy is defined as 1 electron volt or 1eV, i.e.,
1 eV=1.6 × 10–19J. The units based on eV are most commonly used in
atomic, nuclear and particle physics, (1 keV = 103eV = 1.6 × 10–16J, 1 MeV
= 106eV = 1.6 × 10–13J, 1 GeV = 109eV = 1.6 × 10–10J and 1 TeV = 1012eV
= 1.6 × 10–7J). [This has already been defined on Page 117, XI Physics
Part I, Table 6.1.]

2.8.2 Potential energy of a system of two charges in an

external field

Next, we ask: what is the potential energy of a system of two charges q
1

and q
2 

located at r
1
and r

2
, respectively, in an external field? First, we

calculate the work done in bringing the charge q1 from infinity to r1.
Work done in this step is q1 V(r1), using Eq. (2.27). Next, we consider the
work done in bringing q2 to r2. In this step, work is done not only against
the external field E but also against the field due to q

1
.

Work done on q
2
 against the external field

= q2 V (r2)
Work done on q2 against the field due to q1

1 2

124 o

q q

rε
=

π

where  r12 is the distance between q1 and q2. We have made use of Eqs.
(2.27) and (2.22). By the superposition principle for fields, we add up
the work done on q

2 
against the two fields (E and that due to q

1
):

Work done in bringing q2 to r2

1 2
2 2

12

( )
4 o

q q
q V

rε
= +

π
r (2.28)

Thus,
 Potential energy of the system
= the total work done in assembling the configuration

1 2
1 1 2 2

0 12

( ) ( )
4

q q
q V q V

rε
= + +

π
r r  (2.29)

Example 2.5
(a) Determine the electrostatic potential energy of a system consisting

of  two charges 7 µC and –2 µC (and with no external field) placed
at (–9 cm, 0, 0) and (9 cm, 0, 0) respectively.

(b) How much work is required to separate the two charges infinitely
away from each other?
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(c) Suppose that the same system of charges is now placed in an
external electric field E = A (1/r 2); A = 9 × 105 C m–2. What would
the electrostatic energy of the configuration be?

Solution

(a)
12

91 2

0

1 7 ( 2) 10
9 10

4 0.18

q q
U

rε

−× − ×
= = × ×

π
= –0.7 J.

(b) W = U2 – U1  = 0 – U = 0 – (–0.7) = 0.7 J.
(c) The mutual interaction energy of the two charges remains

unchanged. In addition, there is the energy of interaction of the
two charges with the external electric field. We find,

( ) ( )1 1 2 2

7 C 2 C
0.09m 0.09m

q V q V A A
µ − µ

+ = +r r

and the net electrostatic energy is

( ) ( ) 1 2
1 1 2 2

0 12

7 C 2 C
0.7J

4 0.09m 0.09m

q q
q V q V A A

rε
µ − µ

+ + = + −
π

r r

         70 20 0.7 49.3 J= − − =

2.8.3  Potential energy of a dipole in an external field

Consider a dipole with charges q1 = +q and q2 = –q placed in a uniform
electric field E, as shown in Fig. 2.16.

As seen in the last chapter, in a uniform electric field,
the dipole experiences no net force; but experiences a
torque τ τ τ τ τ given by

τ = τ = τ = τ = τ = p×E (2.30)
which will tend to rotate it (unless p is parallel or
antiparallel to E). Suppose an external torque τττττext 

is
applied in such a manner that it just neutralises this
torque and rotates it in the plane of paper from angle θ0

to angle θ1 at an infinitesimal angular speed and without
angular acceleration. The amount of work done by the
external torque will be given by

ext ( sinW d pE d
θ θ

θ θ
τ θ θ θ θ1 1

0 0

= ) =∫ ∫

( )cos cospE θ θ0 1= − (2.31)

This work is stored as the potential energy of the system. We can then
associate potential energy U(θ ) with an inclination θ of the dipole. Similar
to other potential energies, there is a freedom in choosing the angle where
the potential energy U is taken to be zero. A natural choice is to take
θ

0 
= π / 2. (Αn explanation for it is provided towards the end of discussion.)

We can then write,

( ) cos cos – cosU pE pEθ θ θ
π 

= − = = −  2
p Ei (2.32)

FIGURE 2.16 Potential energy of a
dipole in a uniform external field.
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This expression can alternately be understood also from Eq. (2.29).
We apply Eq. (2.29) to the present system of two charges +q and –q. The
potential energy  expression then reads

( ) ( ) ( )
2

1 2[ ]
4 2

q
U q V V

a
θ

ε0
= − −′

π ×
r r (2.33)

Here, r1 and r2 denote the position vectors of +q and –q. Now, the
potential difference between positions r1 and r2 equals the work done
in bringing a unit positive charge against field from r2 to r1. The
displacement parallel to the force is 2a cosθ. Thus, [V(r

1
)–V (r

2
)] =

–E × 2a cosθ . We thus obtain,

( )
2 2

cos
4 2 4 2

q q
U pE

a a
θ θ

ε ε0 0

= − − = − −′
π × π ×

p Ei (2.34)

We note that U′ (θ) differs from U(θ ) by a quantity which is just a constant
for a given dipole. Since a constant is insignificant for potential energy, we
can drop the second term in Eq. (2.34) and it then reduces to Eq. (2.32).

We can now understand why we took θ0=π/2. In this case, the work
done against the external field E in bringing +q and – q are equal and
opposite and cancel out, i.e., q [V (r

1
)  – V (r

2
)]=0.

Example 2.6 A molecule of a substance has a permanent electric
dipole moment of magnitude 10–29 C m. A mole of this substance is
polarised (at low temperature) by applying a strong electrostatic field
of magnitude 106 V m–1. The direction of the field is suddenly changed
by an angle of 60º. Estimate the heat released by the substance in
aligning its dipoles along the new direction of the field. For simplicity,
assume 100% polarisation of the sample.

Solution   Here, dipole moment of each molecules = 10–29 C m
As 1 mole of the substance contains 6 × 1023 molecules,
total dipole moment of all the molecules, p = 6 × 1023 × 10–29 C m

    = 6 × 10–6
 C m

Initial potential energy, Ui = –pE cos θ = –6×10–6×106 cos 0° = –6 J
Final potential energy (when θ = 60°), U

f
 = –6 × 10–6 × 106 cos 60° = –3 J

Change in potential energy = –3 J – (–6J) = 3 J
So, there is loss in potential energy. This must be the energy released
by the substance in the form of heat in aligning its dipoles.

2.9  ELECTROSTATICS OF CONDUCTORS

Conductors and insulators were described briefly in Chapter 1.
Conductors contain mobile charge carriers. In metallic conductors, these
charge carriers are electrons. In a metal, the outer (valence) electrons
part away from their atoms and are free to move. These electrons are free
within the metal but not free  to leave the metal. The free electrons form a
kind of ‘gas’; they collide with each other and with the ions, and move
randomly in different directions. In an external electric field, they drift
against the direction of the field. The positive ions made up of the nuclei
and the bound electrons remain held in their fixed positions. In electrolytic
conductors, the charge carriers are both positive and negative ions; but




